Accelerating of Image Retrieval in CBIR System with Relevance Feedback
نویسندگان
چکیده
Content-based image retrieval (CBIR) systemwith relevance feedback, which uses the algorithm for feature-vector (FV) dimension reduction, is described. Feature-vector reduction (FVR) exploits the clustering of FV components for a given query. Clustering is based on the comparison of magnitudes of FV components of a query. Instead of all FV components describing color, line directions, and texture, only their representative members describing FV clusters are used for retrieval. In this way, the “curse of dimensionality” is bypassed since redundant components of a query FV are rejected. It was shown that about one tenth of total FV components (i.e., the reduction of 90%) is sufficient for retrieval, without significant degradation of accuracy. Consequently, the retrieving process is accelerated. Moreover, even better balancing between color and line/texture features is obtained. The efficiency of FVR CBIR system was tested over TRECVid 2006 and Corel 60 K datasets.
منابع مشابه
بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملDocument Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملReview of Content Based Image Retrieval Systems
Content based image Retrieval (CBIR) has been an active research field since the past two decades. In contrast to a traditional system, in which the images are retrieved based on the keywords, CBIR system retrieves the images based on the visual content. In this paper, we start with the introduction to a simple CBIR system and proceed to review few of the techniques used to develop CBIR system....
متن کاملAn Adaptive Approach to Relevance Feedback in CBIR Using Mining Techniques
ISBN 978-93-82338-22-2 | © 2012 Bonfring Abstract--This paper provides a mining approach to the research area of relevance feedback (RF) in contentbased image retrieval (CBIR). Relevance feedback is a powerful technique in CBIR systems, in order to improve the performance of CBIR effectively. The drawbacks in CBIR are the features of the query image and the semantic gap between low-level featur...
متن کاملRelevance Feedback in Content-based Image Search
Content-based image retrieval (CBIR) is a research area dedicated to address the retrieve and search multimedia documents for digital libraries. Relevance feedback is a powerful technique in CBIR and has been an active research topic for the past few years. In this paper, we review the current state-of-the-art of research on relevance feedbacks for CBIR and present the iFind system developed at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007